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Abstract 

We describe the Stanford Temporal Prover (STeP), a system being developed to 
support the computer-aided formal verification of concurrent and reactive systems 
based on temporal specifications. Unlike systems based on model-checking, STeP 
is not restricted to finite-state systems. It combines model checking and deductive 
methods to allow the verification of a broad class of systems, including programs 
with infinite data domains, iV-process programs, and iV-component circuit designs, 
for arbitrary N. In short, STeP has been designed with the objective of combining 
the expressiveness of deductive methods with the simplicity of model checking. 

The verification process is for the most part automatic. User interaction oc- 
curs mostly at the highest, most intuitive level, primarily through a graphical proof 
language of verification diagrams. Efficient simplification methods, decision proce- 
dures, and invariant generation techniques are then invoked automatically to prove 
resulting first-order verification conditions with minimal assistance. 

We describe the performance of the system when applied to several examples, in- 
cluding the ^-process dining philosopher's program, Szymanski's iV-process mutual 
exclusion algorithm, and a distributed TV-way arbiter circuit. 

"This research was supported in part by the National Science Foundation under grant CCR-92- 
23226, by the Defense Advanced Research Projects Agency under contract NAG2-892, and, by the 
United States Air Force Office of Scientific Research under contract F49620-93-1-0139. 
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1    Introduction 

The Stanford Temporal Prover, STeP, is being developed to support the computer- 
aided formal verification of concurrent and reactive systems based on temporal spec- 
ifications. Unlike most systems for temporal verification, STeP is not restricted to 
finite-state systems, but combines model checking with deductive methods to allow 
the verification of a broad class of systems, including parameterized (iV-component) 
circuit designs, parameterized (iV-process) programs, and programs with infinite 
data domains. STeP was briefly introduced in [Man94]. 

A verification system which combines model checking and deductive methods 
offers a number of advantages over purely model checking or purely deductive ap- 
proaches. Such a system should: 

• Reduce the complexity of the verification task by 

- Decomposition 

Each component may be verified by the most suitable verification method. For 
instance, this would allow a model checker to verify an individual component 
even if it could not verify, because of the state explosion problem, the entire 
system. 

• Allow verification of a broader class of systems: 

- Parameterized programs 

- Parameterized circuits 

- Systems with infinite data domains 

• Automate the verification task: 

- Automatic generation of invariants 

- Effective simplifications 

- Model checking 

- Decision procedures 

- Verification rules 

• Allow visual interaction: 

- Verification diagrams 

• Provide debugging tools: 

- Counter-examples 

- Debugging guidance 



In short, STeP has been designed with the objective: 

To combine the expressiveness of deductive methods with the simplicity 
of model checking. 

Our development efforts have been focused, in particular, on the following areas. 
First, in addition to the textual language of temporal logic, the system supports 

a structured visual language of verification diagrams [MP94a] for guiding, organiz- 
ing, and displaying proofs. Verification diagrams allow the user to construct proofs 
hierarchically, starting from a high-level, intuitive proof sketch and proceeding in- 
crementally, as necessary, through layers of greater detail. 

Second, the system implements powerful techniques for automatic invariant gen- 
eration. Deductive verification in the temporal framework almost always relies on 
finding, for a given program and specification, suitably strong (inductive) invari- 
ants and intermediate assertions. The user can typically provide an intuitive, high- 
level invariant, from which the system derives stronger, more detailed, top-down 
invariants. Simultaneously, bottom-up invariants are generated automatically by 
analyzing the program text. By combining these two methods, the system can of- 
ten deduce sufficiently detailed invariants to carry through the entire verification 
process. 

Finally, the system provides an integrated suite of simplifications and decision 
procedures for automatically checking the validity of a large class of first-order and 
temporal formulas. This degree of automated deduction is sufficient to handle most 
of the verification conditions that arise during the course of deductive verification— 
and the few conditions that are not solved automatically typically correspond to the 
critical steps of manually constructed proofs, where the user is most able to provide 
guidance. 

The remainder of this section provides a brief overview of the system and its 
components. Section 2 provides a concrete description of how the system can be 
used, by showing how several properties of Peterson's mutual exclusion algorithm 
are verified. Various aspects of the system are described in greater detail in the 
subsequent sections, including the model checker, verification rules and verification 
diagrams, automatic invariant generation, and theorem-proving support for estab- 
lishing verification conditions. Finally, Section 6 presents some more substantial 
examples: the ./V-process dining philosopher's program, Szymanski's iV-process mu- 
tual exclusion algorithm, and a distributed iV-way arbiter circuit. 

1.1    Preliminaries 

A reactive system (program) is a system that maintains an ongoing interaction with 
its environment. Examples of reactive systems are concurrent and distributed pro- 
grams, embedded systems, and communication networks. A reactive system must 
be specified by its behavior over time, represented as sequences of states, i.e., com- 
putations.   The specification of a reactive system may be given as a formula of 



linear-time first-order temporal logic, a language which combines first-order formu- 
las with temporal operators for describing state sequences. For instance, given a 
program V, 

states that, in every computation of V, every state satisfying x — 0 is eventually 
followed by a state satisfying y = 0. A temporal formula <p is V-valid if V t= <p, i.e., 
<p holds over all computations of V. A state (first-order) formula1 <p is V-state valid 
\fp t= □ ip, i.e., <p holds in all states of all computations of V. Our goal is to show 
the T'-validity of a given temporal specification ip for a reactive system V. 

Our computational model for reactive systems, based on [MP91b], is that of 
(fair) transition systems. A fair transition system consists of an initial condition, a 
set of transitions, i.e., next-state relations, and a fairness requirement. Fair transi- 
tion systems can be used to define the semantics of a simple programming language 
SPL which includes constructs for concurrency, nondeterministic selection, and pa- 
rameterized statements. For instance, 

II   S\i] 
i=l 

where the same process S is executed N times in parallel, is a typical parameterized 
statement, with parameter N. A program containing a parameterized statement is 
a parameterized program. 

The remainder of this paper assumes that the reader is familiar with the fair 
transition model, SPL, and the language of temporal logic. For an in-depth treat- 
ment of these topics, see [MP91b]. 

1.2     System Overview 

Figure 1 presents a high-level overview of the STeP system. A brief description of 
each component follows. 

Input The basic input to STeP is an SPL program V and a temporal logic formula 
<p which expresses the property of V to be verified. The SPL program is modeled as 
a fair transition system 5. Even though SPL can be used to describe both software 
and hardware systems, STeP is not restricted to SPL, and can be used to verify 
any system that can be modeled as a fair transition system. 

Verification Diagrams The preferred approach to constructing a proof is through 
verification diagrams. Through a graphical user interface, the user can draw a di- 
agram that represents the proof of a given formula ip (see Section 2.1). The corre- 
sponding verification conditions are generated automatically from the verification 
diagram and are checked by the automatic prover. 

1 We refer to first-order formulas as state formulas or assertions. 
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Figure 1: An overview of the STeP system 



Model Checking The model checker takes as input the fair transition system S 
and the (simplified) formula ip. It tries to show that <p is valid for 5 by searching 
for a counterexample in the form of a computation satisfying -up (see Section 3). 
For finite-state systems, the algorithm guarantees termination (up to space/time 
limitations) with a positive answer or counterexample. The model-checker may 
also be applied to infinite-state systems; termination with a positive answer or 
counterexample is not guaranteed in this case. 

Automatic Prover This is the main module of the deductive component of 
STeP, and comprises four distinct subcomponents that interact with each other 
in the course of a proof: 

• Verification rules are used to reduce the proof of P-validity of a temporal 
formula cp to the proof of validity of a set of first-order formulas, called veri- 
fication conditions. 

• Bottom-up invariants, generated by static analysis of the transition system 
and the program text, are used to simplify verification conditions. 

• The first-order prover (subsections 5.1- 5.3) is responsible for simplifying ver- 
ification conditions and proving their validity if possible. This is done with 
a combination of (contextual) rewriting techniques, decision procedures, and 
general theorem proving. This prover can also use previously proven invari- 
ants. 

• A number of automatic techniques, including invariance strengthening and 
propagation, are available if the first-order prover is unable to prove all ver- 
ification conditions. These techniques are primarily intended to strengthen 
invariants that are not inductive and to generate intermediate assertions. 

Interactive Prover If the automatic prover is not able to prove a verification 
condition, the user can choose to give the simplified but unproven verification con- 
dition to the interactive prover, where, if it is indeed valid, it can be proved with 
some user guidance (see subsection 5.4). 

If the formula is not valid, the user may be able to receive some suggestions on 
why it is not valid. This information can then be used to modify the program or 
strengthen an intermediate assertion or invariant. Note that the availability of the 
model checker allows the user to search for a counterexample while simultaneously 
attempting an interactive proof. 

The interactive prover also features deduction rules for temporal logic that can 
be used to simplify and prove temporal formulas. 



1.3    Implementation 

STeP is written in Standard ML of New Jersey with the exception of the model 
checker, which is implemented in C. 

A prototype X-windows version of the graphical user interface is being developed 
using the eXene library for Concurrent ML. 

Currently, after six months of implementation, the size of the source code is 
approximately 40,000 lines. 

2    Overview: A Simple Example 

This section describes how STeP can be applied to the deductive verification of 
Peterson's mutual exclusion algorithm, as implemented by program PET of Figure 2. 
In fact, since program PET is finite-state, each of the properties proved below can 
also be verified automatically using the STeP model checker. 

local     yi, j/2    : boolean where y1 = F,y2 = F 
$ : integer where s = 1 

Pi 

to:  loop forever do 
noncritical 

s:= 1 
await -ij/2  V  s = 2 
critical 
yi := F 

mo:   loop forever do 
~m\: noncritical 
m2: i/2 := T 

ms: s := 2 
m^\ await —it/i   V  s = 1 
77*5: critical 
.m6: y2 := F 

Figure 2: Program PET (Peterson's algorithm for mutual exclusion). 

In program PET, the basic mechanism protecting access to the critical sections 
(represented by statements £5 and m5), is provided by the boolean variables yx and 
2/2- Each process Pi, for i = 1,2, that is interested in entering its critical section sets 
its yi variable to T. On exiting the critical section, the corresponding y,- is reset to 



F. 
The problem with this approach is that the two processes may arrive at their 

waiting positions, £4 and m± respectively, at about the same time, with both j/i = 
j/2 = T. If the only criterion for entry to the critical section was that the y; of the 
competitor be F, this situation would result in a deadlock (tie). 

The variable s is intended for breaking such ties. It may be viewed as a signature, 
in the sense that each process that sets its & variable to T also writes its identity 
number in s at the next step taken by the process. Then, if both processes are at 
the waiting position, the first to enter will be P, such that s ^ i. For i = 1,2, let 
T denote the index of the other process. The fact that s ^ i implies that s = T, 
which means that the competitor PT was the last to assign a value to s. Therefore 
Pi should have priority. 

We first introduce our graphical proof language of verification diagrams, and we 
then illustrate the deductive verification of a few properties of program PET. Details 
about our specification language can be found in [MP91b]. The deductive methods 
used are discussed in more detail in [MP91a] and [MP94b]. A more extensive 
explanation of verification diagrams is given in [MP94a]. 

2.1    Verification Diagrams 

In proofs of properties of reactive systems, it is typically necessary to consider several 
assertions (state formulas) at the same time and to determine which transitions lead 
from one assertion to another. A verification condition {</>}T{V>} is an assertion 
stating that, whenever r is taken from a state satisfying 9, the resulting state 
must satisfy ip. It is convenient to visualize these conditions with a diagram that 
summarizes the assertions under consideration and the possible transitions between 
them. 

A verification diagram [MP94a] is a directed labeled graph where: 

Nodes in the graph are labeled by assertions. We will often refer to the node 
by the assertion labeling it. 

• 

• Edges in the graph represent transitions between assertions. Each edge con- 
nects one assertion to another and is labeled by the name of a transition in 
the program. We refer to an edge labeled by r as a r-edge. 

• One of the nodes may be designated as a terminal node ("goal" node). In 
the graphical representation, this node is distinguished by having a boldface 
boundary. No edges depart from a terminal node. 

Verification diagrams provide a concise representation of sets of verification con- 
ditions as follows. For a nonterminal node (labeled by) <p and transition r, let 
<pi,...,tpkbe the nodes reached by r-edges departing from <p. We say that <pi,...,<pk 
are the r-successors of <p. The verification condition associated with tp and r is given 
by: 



{<p}-T {p V  v?!   V   •••  V  lfk}. 

In other words, there is an implicit r-edge connecting p to itself. Note that for the 
case k = 0, i.e., no r-edges depart from <p, the verification condition associated with 
if and T is given by: 

if} r {<p}. 

No verification conditions are associated with terminal nodes. 
Since a diagram provides a succinct representation of a large set of verification 

conditions, it can often present a useful and illuminating overview of a complex 
proof. 

A diagram is valid over program V (V-valid) if all the verification conditions 
associated with nodes of the diagram are 'P-state valid. 

2.2    Proving Invariance 

The mutual exclusion property for program PET is expressed by the following safety 
formula: 

<PME'-    D_,(a^5 A at-m5). 

where atJ5 and at.m5 are predicates stating that control is at statements £5 and 
7725, respectively. 

Rule INV 

Using deductive methods, the following verification rule, rule INV, can be used to 
prove that the state formula p is invariant in every computation of a program V, 
where 0 is the initial condition and T is the set of transitions of the transition 
system corresponding to V: 

INV For strengthening assertion p : 
51. G-^ 
52. MTM 
53. p-*p   

Dp 

The rule states that in order to establish the "P-validity of the temporal formula 
Dp, it suffices to find an assertion ip, strengthening p, such that premises S1-S3 are 
P-state valid. Premise SI states that the initial condition 0 implies <p. Premise S2 
states that the verification condition {<p} T {p} holds for each transition T £T, i.e., 
if r is taken from any state satisfying <p, the result is a state also satisfying ip. If 
premises SI and S2 hold for (p, then ip is called an inductive assertion; by induction, 
ip holds in every state of a computation. By premise S3, it follows that p also holds 
in every state of a computation. 



Note that all the premises of rule INV are state formulas, whereas the conclusion 
is a temporal formula. This is typical of the deductive methodology, which applies 
verification rules to reduce the proof of temporal formulas to the proof of first-order 
conditions. 

PET: Mutual Exclusion 

To prove mutual exclusion for program PET, p is taken to be: 

p:    -<(at-£5 A at.m5). 

In this example, as is often the case, verification requires identifying a suitable 
strengthening assertion <p. To assist in this task, STeP provides built-in mechanisms 
for automatically generating low-level invariants and automatically strengthening 
proposed invariants suggested by the user. 

Low-level invariants (also called "bottom-up invariants") are guaranteed to be 
invariants by the way they are generated, so they can be used in establishing the 
premises of the above verification rule. The following automatically generated in- 
variants are necessary for establishing mutual exclusion for program PET: 

Xi:   at J3..6 -> t/i 
X2-   at.m3.s -> 2/2 

Strengthened invariants (also called "top-down invariants") are obtained by 
weakest precondition propagation. Consider, for instance, statement £4. If the 
corresponding transition r^4 is never to violate mutual exclusion, it must be the 
case that ->y2 V s = 2 is false whenever control is at £4 and m5. After simplifying 
with respect to X2, this yields the following strengthened invariant: 

<pi\    atJ.4 A at-m5   —>•   -i(s = 2). 

Similarly: 

(f2-     atJ.5 A atjm.4   —>   -i(s = 1). 

Thus, for this example, the proof of mutual exclusion is entirely automatic. First, 
STeP identifies the specification as a safety property and invokes rule INV. Since 
p is not inductive, the proof does not succeed. Therefore, bottom-up invariants, 
including xi and X2, are generated. The system again attempts to establish the 
invariance of p, and in doing so, generates the strengthened invariant <p: 

<p:    p A (pi A <f2- 

Finally, STeP is able to prove each of the premises of rule INV. 
More typically, however, the user must provide direction to the system by sug- 

gesting a strengthening assertion cp. Even if <p is not immediately inductive, the 
system can apply invariant strengthening heuristics to complete the proof. 

Invariant generation and strengthening methods are discussed more fully in Sec- 
tion 4. 



2.3    Proving Precedence 

The property of 1-bounded overtaking for process Pi of program PET may be ex- 
pressed by the following "nested waiting-for formula," where the wait-for ("weak 
until") operator W is right associative: 

<PB:    atJ4  => (->at-m5) W at-m5 W (-<atjm5) W atJ5 

In other words, once process P\ has reached statement £4, process Pi may enter its 
critical section roj at most once before P\ enters its critical section. 

Rule WAIT 

The following verification rule, rule WAIT, may be used to establish nested waiting- 
for formulas for a program V: 

WAIT        For intermediate assertions <pn,...,<po : 
n 

Wl.    p ->  V <Pj 
3=0 

n W2.    Wi) T {\/<pj}    for * = 1,. 
3=0 

W3.    <pj-*qi for i — 0, ■ ■ •, n 
p  =>   qnWqn-i •■•9i W?o 

This rule states that to establish the T'-validity of the nested-for formula, it 
suffices to find intermediate assertions (pn,...,<p0 such that premises W1-W3 are 
P-state valid. Premise Wl states that every state satisfying p also satisfies some <pi, 
for some intermediate assertion cpi. By premise W2, every y>,--state, for i = 1,..., n, 
is followed by a (pj-st&te, for j = 0,..., i. It follows that 

p   =>    <pnW<Pn-l--<PlW<P0 

holds for every computation of V, and by monotonicity, premise W3 establishes the 
desired result. 

Wait-for Diagram 

We can visualize the proof with a verification diagram, in particular a wait-for 
diagram. A wait-for diagram is a weakly acyclic verification diagram with nodes 
<pn,..., ipo, where <po is a terminal node, satisfying the following requirement: when- 
ever node ipi is connected by an edge to node <pj, then i > j. V-valid wait-for dia- 
grams can be used to establish the T'-validity of nested wait-for formulas, as stated 
by the following claim: 

Claim 1 (WAIT-FOR) A V-valid wait-for diagram establishes that the formula 

10 



V    <Pj    =*•    Vm   W   Vm-1   •••   Vl   W   <^0 
i=o 

is V-valid. 
If, in addition, we can establish the V-state validity of the following implications: 

m 

P —►   V Vi        and       W ~~^ ^    for   J = 0,..., m 
i=o 

i/zen we we can conclude the V-validity of: 

p  =>   qm  W qm-i  ■■• qi   W q0 

PET: 1-Bounded Overtaking 

The following intermediate assertions can be used to establish 1-bounded overtaking 
for program PET: 

<^3 

Pi 

<Po 

at 24 A at _7B4 A s = 1 
atJL4 A at.m,5 
atl4 A (at-mo..3,6 V (atjm4 A s = 2)) 

The wait-for diagram of <^B for program PET is given in Figure 3. It presents 
useful information that is not found in the straightforward listing of 923, ip2, </>i, and 
ipo above. For instance, consider premise W2 with respect to ^3 and transition rm4, 

{V>3> rmi {yj3 V if2 V <?i V 90} 

stating that: 

if rTO4 is taken from a state satisfying ^3, then the resulting state must 
satisfy ^3 V ^ V 91 V ^. 

However, in the verification diagram of Figure 3, there is a single arrow labeled m4 

departing from y>3, indicating that 

if rm4 is taken from a state satisfying ^3, then the resulting state must 
satisfy <p3 V (p.2, 

yielding the more precise verification condition: 

{^3} Tmi {93 V (^2} 

As another example, premise W2 with respect to <p3 and transition r^4 yields 
the verification condition: 

11 



(jf*: at-£4 A atjm^ A s ED 
m4 

(ifi2- atJ.4 A at-m,5j 

m<$ 

f y>i: atJ4 A (ai.m0..3,6 V {atjm^ A s = 2)) J 

f VJ0: ai-£5 1 

Figure 3: Verification diagram for 1-bounded overtaking. 

{fz} TU   {tp3  V   V2  V  Pi   V   ipo} 

whereas the verification diagram yields: 

{Vs} n4 {<f3} 

Both conditions can be established automatically, since <pz and the bottom-up in- 
variant X2: at-rnz.s —> 2/2 imply that r^4 cannot be taken from a 93-state, but the 
stronger condition can be verified more efficiently. For more complicated proofs, 
this efficiency is an important advantage. Furthermore, this gain is obtained at 
almost no cost, since it is in any case intuitive for the user to connect <pz to <p2 by 
only the single arrow m^. 

In this case, for n = 3 and the number of transitions |T| = 16, premise W2 
yields 48 verification conditions. Once the user supplies the intermediate assertions 
ipo,..., tfizt either textually or graphically, all 48 verification conditions are proved 
automatically, as well as premises Wl and W3. Again, as pointed out above, the 
automatically generated bottom-up invariants are used for these proofs. 

2.4    Proving Response 

The 1-bounded overtaking property for program PET does not state that P\ is guar- 
anteed eventual access to its critical section. The accessibility property is expressed 
as the following response formula: 

<pR:     atJ2   =*> O atJ5 

12 



Rule CHAIN 

The following verification rule, rule CHAIN, can be used to prove simple response 
formulas like <PR, i.e., formulas of the form 

where p and q are state formulas. 

CHAIN      For  intermediate  assertions  ipn,...,(p\   and 
helpful transitions rn,..., TX : 

n 

Rl.     p -> q V  V tpj 
i=i 

R2.      {ipi} T {q V V <pj]    fori = l,...,n 

R3.      {<fii} n {q V V Vi)    for i = 1,..., n 

R4.     (pi —>• En (r,-) for i = 1,..., n 

p => Oq 

The rule states that to establish the V-validity of response formulas of the above 
form, it suffices to identify a sequence of intermediate assertions ipn, ...,tpi, and a 
set of just transitions rn,...,ri such that the premises R1-R4 are P-state valid. 
Premise Rl states that p implies q (in which case the proof is finished) or one of 
the intermediate assertions <p,-. Premise R2 requires that taking any transition from 
a </3i-position results in a next position satisfying ipj, for some j < i. Premise R3 
requires that taking the just ("helpful") transition r,- from a <£;-position results in a 
next position which satisfies (fj for j < i. Premise R4 claims that the just transition 
T{ is enabled at every ^-position. 

Response Diagram 

Like a proof of precedence properties, we can visualize the proof of such response 
properties with a verification diagram, in this case a response diagram. A response 
diagram is a verification diagram with nodes <pn,...,<po, and two kinds of edges 
(distinguished by single and double lines) that satisfies the following requirements: 

• If a single edge connects node <pi to node <pj, then i > j. 

• If a double edge connects node <pi to node ipj, then i > j. 

• Every node <pi, i > 0, has a double edge departing from it. This identifies 
the transition labeling such an edge as helpful for assertion </?,-. All helpful 
transitions must be just. 

13 



• No transition can label both a single and a double edge departing from the 
same node. 

• (fo is a terminal node. 

The first two requirements ensure that the diagram is weakly acyclic, i.e., whenever 
node (fi is connected by an edge (single or double) to node cpj, j < i. The stronger 
second requirement ensures that the subgraph based on the double edges is acyclic, 
forbidding self-connections by double edges. The third requirement demands that 
every nonterminal assertion (i.e., pi for i > 0) has at least one helpful transition 
associated with it. 

The verification condition associated with <p and r for the case that r labels only 
single edges from <p is as defined in Section 2.1. If r labels any double edges from p, 
where pi,.. .,Pk, k > 0, are the r-successors of ip, then the verification condition 
associated with <p and r is as follows: 

{</?} r {cpi V • • • V pk} 

Transition r, identified as helpful, is required to lead away from ip. This, with the 
requirement of acyclicity, implies that when this transition is taken from a estate, 
the computation gets closer to the goal po- 

Furthermore if r labels a double edge departing from p, we require: 

p -* En(r) 

That is, a transition helpful for <p is enabled on all (^-states. We refer to this 
requirement as the enabling requirement. 

A response diagram is said to be valid over program V (V-valid) if all the verifi- 
cation conditions and enabling requirements are P-state valid for every nonterminal 
node pi, i > 0, and every transition r. 

The consequences of having a P-valid response diagram are stated in the follow- 
ing claim. 

Claim 2 (RESPONSE) A V-valid response diagram establishes that the response 
formula 

m 

V <Pj =^ Ovo 
3=0 

is V-valid. 
If, in addition, we can establish the V-state validity of the following implications: 

m 

p —)■   \J   pj        and       po —> q 
j=o 

then we can conclude the V-validity of: 

p  =>   OQ 
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Figure 4: Verification diagram for accessibility. 
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PET: Accessibility 

Figure 4 presents the response diagram establishing (pR. The diagram is hierarchical. 
In particular, the nodes labeled (p6, <P5, and <^4 are contained in the compound node 
labeled s = 1, which itself is contained with nodes tp3, <p2, and tpi in the compound 
node labeled atJ4. These encapsulations were inspired by Statecharts [Har87]. A 
hierarchical diagram may be interpreted as follows: 

• The label of a compound node is implicitly a conjunct in the label of each of 
its subnodes. 

• Each arrow from a compound node represents an arrow from each of its sub- 
nodes, with the same label and destination node. 

• Each arrow to a compound node represents an arrow to each of its subnodes, 
with the same label and source node. 

Thus, the diagram in Figure 4 may be presented explicitly by adding an arrow 
labeled £3 from <p7 to each node <p6,...,<pi (deleting the original arrow from <p7), 
adding s = 1 as a conjunct in the label of each node <p6, • • •, V4 (deleting the 
compound node labeled s = 1), and adding atJL\ as a conjunct in the label of each 
node v?6> • • •) Vi (deleting the compound node labeled at -£4). 

The resulting diagram satisfies the requirements of the response diagram, i.e., it 
is acyclic, it has a goal node (p0 (with no departing arrows), and there is a double 
arrow from each node, excluding the goal node, along a path to the goal node. 
Each double arrow represents a claim of single-step progress. For instance, the 
double arrow from ip3 to <p0 labeled £4 indicates that, if (p3 holds "long enough," 
then eventually statement £4 will be executed and will lead to a <^0-state. Note 
that, according to the diagram, it is also possible for m2 to be taken from a state 
satisfying <p3, leading to a </?2-state. 

Single-step progress is assured by requiring that, for each helpful transition r 
labeling a double arrow from a node labeled <p, it must be the case that r is just, 
i.e., has an associated weak fairness requirement, and that r is enabled on every 
state satisfying <p. An "unhelpful" transition such as m2 from <p3 is indicated by a 
single arrow. 

Given the diagram in Figure 4, the system is able to check all the associated 
verification conditions and establish the desired accessibility property for program 
PET. 

3    Model Checking 

Generally speaking, the model checking problem is to determine whether a given 
logical formula can be satisfied by some model by exploring the state space of the 
system.   In STeP the logical formula is taken to be the program specification, 
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expressed -in (linear-time) temporal logic, and a model is some computation of the 
program. 

STeP provides an efficient implementation of the model checking algorithm de- 
scribed in [MP94b] and originally proposed in [VW86]. We only sketch the algorithm 
here. 

Given a program V and a linear-time temporal formula ip, the algorithm de- 
termines whether there exists a computation of V that satisfies -tip. The approach 
is based on automata: the program is represented as a transition graph, which is 
viewed as a generator Ap of infinite words over the program's state space, and ip is 
viewed as an acceptor Av of infinite words. 

There are several types of automata for infinite words. In our algorithm we 
use Streett automata [Str82]. A Streett automaton A consists of the following 
components: 

• a finite set of nodes N, 

• an initial node no, 

• a finite set of edges E, and 

• an acceptance list C = (Pi, Pi),..., (Rm,Pm). Ri C N are called recurrent 
nodes and Pt C N are called persistent nodes. 

An infinite sequence of automaton nodes, no, ni,..., is accepted by A if 

• no is the initial node of A, and 

• for every i = 0,1,..., there exists an edge e € E connecting n,- to n,-+i, and 

• for the set of nodes, Njnt, that appear infinitely often, for each i = 1,..., m, 
either Ninj n Ri / 0, or Ninj C p. 

To represent the fairness requirements of V, recurrent edges are added to the 
Streett acceptance list [HSB93]. The acceptance list of this modified Streett au- 
tomaton (also called Edge/Node Streett automaton) is thus a list of triplets, C = 
(Pi, Pi, E\),..., (Rm, Pm, Em), where Ri and P are as before, and E{ C E is a set 
of recurrent edges. The acceptance condition of an Edge/Node Streett automaton 
is the same as above except for the third condition, which becomes 

• at least one of the following holds for each i — 1,..., m: 

JV,-n/nÄ:-#0    or    NinfCPt,    or   Einf C E{, 

where N^c  is, as before, the set of nodes that appear infinitely often and 
Ejnt is the set of edges that appear infinitely often. 
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When translating a fair transition system into an Edge/Node Streett automaton, 
each fair transition r contributes one triplet (RT,PT,ET) to the Streett acceptance 
list. ET contains all edges labeled by r for both compassionate and just transitions; 
for a just (weakly fair) transition, PT = 0 and RT contains all nodes labeled by 
an assertion on which r is disabled, whereas for a compassionate (strongly fair) 
transition these are reversed: RT = 0 and PT contains all nodes labeled by an 
assertion on which r is disabled. 

In this representation, showing that V satisfies ip reduces to showing that 

L{Ap) C L(AV) 

where L{Ap) is the language generated by Ap (i.e., the set of all computations of 
V), and L{AV) is the language accepted by Av (i.e., the set of all sequences that 
satisfy <p). The set inclusion given above can be rewritten as 

L(Av)nL(Äv) = ® 

or alternatively: 

L{Av) r\ L(A-,V) = H) 

This can also be written as 

L{BV,^) = 0 

where Bp^v represents the product automaton, also called the behavior automaton, 
of Av and A^. The nodes of B-p,-,^ are labeled by pairs (s,n), where s is an 
element of the state space of V and n is a node of A-,v, and the edges are labeled 
by transitions of V. The acceptance list of Bpt-,v is the union of the acceptance list 
of A-,v and that of A-p. 

In the context of fair transition systems, the automaton Bp,-,v is not empty iff 
it contains a fulfilling subgraph, i.e., a subgraph that satisfies the Streett acceptance 
criteria which result from the fulfillment requirements associated with formulas 
such as Op and the fairness requirements of V. A subgraph S satisfies the Streett 
acceptance criteria if (1) it is a strongly connected component, and (2) either 5 D 
Ri /H,5C Pi, or there exists e € Ei such that e connects two nodes in 5, for 
every i = 1,.. .,m. 

Following this approach, the algorithm is given as follows. Given a (linear-time) 
temporal formula <p, the Streett automaton A-nV is constructed using the algorithm 
presented in [KMMP93]. Starting from A-,v and the transition graph of V, Bv,^v 

is incrementally constructed. The algorithm adds a maximal strongly connected 
component is found, and it then checks whether this component has a fulfilling 
subgraph. The algorithm terminates when it finds a fulfilling subgraph, or when 
it cannot add any new nodes. In the first case the corresponding computation is 
returned as a counter example. In the latter case the "P-validity of ip has been 
established. 

To illustrate the algorithm we apply it to program INF and the "P-valid property: 
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x > 0 

Figure 5: Automaton for (x > 0) W (y = 2) 

9: -.((* > 0) W (y = 2)) 

INF has the following transition relations: 

n ■■ 0< x<3   A a:' = a: + 1   A    y' = y 
T2 : 0 < y < 3   A y' = y + I    A    x' — x 
T3 : x' = 0      A y' = i 
T/ : x' = x      A y' = y (idling transition 

INF'S justice set is J = {ri, r2, rs}. 
The automaton for -><£> is shown in Figure 5. Part of INF'S (infinite) transition 

graph is shown in Figure 6; in this figure, (a, b) stands for the state where x = a,y = 
b. The algorithm constructs the behavior automaton shown in Figure 7, which has 
three strongly connected components: (s0,ni), (si,rci), and (s2>"i)- None of these 
are fulfilling: all of them fail to satisfy the acceptance triplet originating from 
transition r3 (R3 = 0, P3 = 0, E3 = {edge labeled by r3}). Intuitively, none of 
these subgraphs is fair with respect to r3: r3 is enabled infinitely often but never 
taken. Therefore no computation of INF satisfies (x > 0) W (y = 2), establishing 
the V-validity of (p : ->((x > 0) W (y = 2)). 

This example illustrates how the model checker is able to verify a property of 
an infinite-state program. 

4    Invariant Generation 

A large class of invariants can be generated automatically by STeP to simplify 
the verification process. Each of the invariant generation techniques can be loosely 
classified as bottom-up or top-down. In the bottom-up approach only the program 
is considered:  inductive assertions are deduced from the program structure.  The 
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Figure 6: Part of the state transition graph. 

n0    ) 2Ju/so,ni 

Figure 7: Behavior automaton. 
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top-down approach is goal-directed: it considers the property that has to be proven 
and strengthens some of its parts to produce an inductive assertion. 

4.1    Bottom Up: Local Invariants 

Local invariants are bottom-up invariants which relate program control predicates to 
assertions involving data variables. The system uses several heuristics for generating 
local invariants. An important concept in this context is ownership of variables: a 
variable y is owned by a statement £ if no transition parallel to £ modifies y. 

Reaffirmed Invariants 

The simplest type of bottom-up inductive assertions are those which are guaranteed 
to hold after execution of each transition that interferes with them, without any 
assumption about the state before the execution. 

For example, a reaffirmed invariant can be deduced in the case where a transition 
sets a variable y to a constant expression c: 

4:     V := c     £2: 

If y is owned by £2 we may conclude the inductiveness of 

at.£2 —> y = c 

i.e., when control is at £2 the value of y is c. Similarly, in the following example, if 
y is owned by £2, and Ci and c2 are constant expressions, then from 

£\\ if c then y := c\ else y := c2     £2- 

we can conclude that 

at-£2 -* y = Ci V y = C2 

is an inductive invariant. 
Another example of a reaffirmed invariant is if a location £ in the program is 

reachable only as a result of a test K. In such a case we know that when the location 
is first entered the test is valid. If all variables appearing in the test are owned by 
£ we can conclude 

atJ. —>■ K. 

For example, if all variables in c are owned by £1, then from 

£Q: await c     £\. 

we may directly infer the invariant: 

at-£\ -> c 
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Similarly from 

£0: [while c do 5]     ^: 

we can infer 

at.ii —> -ic 

if all variables in c are owned by £\. Similar invariants can be generated for when 
statements and conditional statements. 

If the possible values of a data variable are known for every program location, 
one can reverse the implications. For example, if it is known that 

at -£o   —>   y — Ci 

atllt2   ->   y = c2yy = c3 

at lz   ->•   y = c3 

where £Q, £i, £2, and £3 cover the range of possible program locations, then, if c\, c2 

and C3 are distinct, one may infer: 

y = c\    —>    at JLQ 

y = c2   —>    atl\>2 

y = c3   ->■    o*Ji..3 

Range Invariants 

Even if it is not possible to determine the exact value of a data variable at a 
given location, it is sometimes possible to determine the range from which the 
data variable takes its values, if that variable is modified only in a restricted and 
predictable way. Range invariants are of the form: 

atJ ->• I <y <u 

For instance, for the program RES-SEM, shown in Figure 8, STeP generates the 
range invariant 

y>0. 

Invariants of Parameterized Programs 

Parameterized programs often contain array variables x such that no single state- 
ment or process owns x. However if x[i] is modified only by P[i], invariants like 
those described above can still be generated. Consider, for example, program OR- 
DER, shown in Figure 9. It grants each process access to its critical section in 
the order of its process sequence number. For this program STeP generates the 
following local invariants: 

Xi:     V* : [1..N]. (atJ5[i\  <—>  y[t\) 
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local M, y : integer where y — 1 

M 

to:        ||   P[i]:: 

'ti:   loop forever do 
£2:   noncritical 
£3:   request y 
£4:   critical 
£5:   release y 

Figure 8: Program RES-SEM (resource allocation by semaphores) 

X2:    Vt : [1..N]. (atJ3[i\ —*• a[t\ > i) 

X3-.    Vi:[l..iV]. (atJ2[i\—>y[a[i\]) 

in N    : integer where N > 0 
local      a   : array [l..iV] of integer where Vi : [1..AT]. a[i] = 1 

y   : array [L.iV] of boolean where Vz : [1..AT]. ->y[i] 

£Q:  while a[i] < i do 
i\\  await y[a[i]] 
£2:  a[i] := a[i] + 1 

i=\ £3:   critical 
£4:  y[i\:=T 

P[i] :: 

Figure 9: Program ORDER 

The local invariants %2 and %3 are examples of reaffirmed invariants, and xi 
is the conjunction of a reaffirmed invariant and a reverse implication. Using these 
invariants, the proof of mutual exclusion for program ORDER, expressed by 

Vz,; :i<j: [1..N]. Q-. (at.£3[i] A atJ3\j]) 

is automatic. 
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4.2    Bottom Up: Linear Invariants 

A linear invariant is a linear arithmetic relation involving program variables and 
program control states. A typical linear invariant, for instance, is given by: 

atJ0..2 + yi = 1 

where atl0..i stands for at J0 V atl\ \ZatJ2- Note that boolean expressions are 
converted to integers by taking T to be 1 and F to be 0. 

Linear invariants can also be generated for parameterized programs, where each 
control predicate can be generalized to represent the number of processes at that 
control point, e.g., N(atJ0..2) rather than atl0..2- 

Let V be a program, represented as a transition system with set of transitions 
T and initial condition Q. A set of variables yi,..., ym is linear if the effect of each 
transition r € T can be expressed as 

m 

y'i = c1 + £<&-y* 

where cj and cjk are constant expressions, i.e., expressions whose variables are not 
modified by any transition of "P. Thus, each variable t/,- is modified only by a linear 
combination of other linear variables and constants. 

Given a set of linear variables j/i,..., ym and control locations l\,..., tn, a linear 
invariant is an equation of the form: 

m n 

x--    5>-y; + Y.bj-NiatJj) = K 
i=l j=l 

where a; and bj are constant expressions and K is a constant. The values of a, and 
bj are determined by solving the system of linear equations that results from the 
requirements for an inductive invariant, i.e., 

• X is implied by the initial condition 0, which translates into 

m n 

5>-y° + J2bJ-N(atJJ°) = K 

where y° denotes the initial values of t/; and N(at-£j°) denotes the initial 
number of processes at £j, and 

• x is preserved by each transition T eT, which, for each T £T translates into 

m n 

J2a* ■ A(r,yi) + Y.br A(r'N(atJj)) = ° 
i=l 3=1 

where A(r, m) is the increment in y,- due to r and A(r, N(atJj)) denotes the 
increase or decrease in the number of processes at £j due to r. 

24 



STeP constructs invariants based on a maximal set of linearly independent solu- 
tions (if the resulting system of linear equations is not independent, there is no 
unique solution). As an example, consider program RES-SEM, which was presented 
in Figure 8. The only linear variable is y, so linear invariants for RES-SEM are of 
the form:2 

7 

XR-   a-y + Y,brW(atJj) = K 
j=o 

Imposing the invariance requirements results in the following system of equations: 

e a + b0 = K 

TO -b0 + M ■ 61 = 0 

rj -&! + 62 = 0 

rt -61 + 66 = 0 

T2 -62 + ö3 = 0 

T3 -a — 63 + 64 = 0 

n -64 + h = 0 
T5 a - 65 + 61 = 0 

T6 -M -66 + 67 = 0 

from which STeP constructs, among others, the following invariant: 

y + N(atJ4) + N(atJ5) = 1. 

In conjunction with the local invariant y > 0, this is sufficient for establishing 
mutual exclusion for program RES-SEM. 

4.3    Top-down: Strengthening 

Top-down invariants, i.e., strengthened invariants, are generated in STeP by in- 
variant propagation. Suppose STeP is given a proposed invariant rp to be proven. 
The system first generates bottom-up invariants and checks whether ip is induc- 
tive relative to the conjunction of all bottom-up invariants. If this is not the case, 
i.e., V> cannot be proven, the next step is to strengthen V based on the verification 
conditions that could not be proven. 

Suppose that ^ is a proposed invariant.   Given a transition r for which the 
verification condition 

M T M 

cannot be proven, the system automatically computes the weakest precondition 
wpc(tj;, T) of ip with respect to r, i.e., the weakest assertion 7 that guarantees ip is 
true when r is taken from a state that satisfies 7. The strengthened invariant is 
then taken to be: 

2 Strictly speaking,  M is also a linear variable, but since it is recognized to be a constant 
expression and, as such, does not contribute anything useful to a linear invariant, it is excluded. 
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1p Awpc(ip,r) 

Consider, for example, the proof of mutual exclusion, expressed by the invariant 

i\>:    -i(ai_£5 A at-m$) 

for program PET, presented in Section 2. i> is not inductive, since 

is not valid for T = £4. STeP automatically computes the weakest precondition of 
£4, yielding 

wpc(£4,tp):    atJ4 A (->y2 V s = 2)   ->■   -^(atl5' A at.m£) 

T at -TO5 

which simplifies to 
tpi.     atl4 A at-rri5 —> t/2 A s 7^ 2 

Similarly for m4: 
V>2:-    ai^5 A atjm4 -> t/i A s / 1 

The conjunction of the proposed invariant and the weakest preconditions, 

ip:     iß A ipi A ip2 

is inductive and all verification conditions are established automatically. 

To summarize invariant generation, consider program PET once more. In order 
to prove mutual exclusion 

fME-    -'(at ^5 A atjms) 

STeP automatically generates the following invariants: 

range 1 < s < 2 

local J yi   *+  at/3-e 

h    . \atJ4A at.m5 -> r/2 A s ^2 
s r nS ° 1   af-4 A a*_m4 -> t/i As^l 

and, using these invariants, automatically establishes all verification conditions. 
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5    Theorem-proving support 

Effective verification requires effective theorem-proving, in order to free the user 
from the many tedious low-level details of a formal proof. In STeP, most of the 
verification conditions that need to be proved for typical systems are trivial. How- 
ever, automating the process of proving them requires the integration of a large 
variety of tools, which we now briefly describe. 

5.1     Simplification 

Most of the automated theorem-proving in STeP is done by a very general, but 
efficient, rewriting mechanism, which we call the simplifier. It can be best described 
as a form of contextual rewriting (a generalization of conditional rewriting, see 
[Zha93]) that incorporates a number of specialized features that we have found 
useful for dealing with the formulas that commonly occur in verification conditions. 
Thus, the contextual rewriting includes: 

• A form of non-clausal propositional simplification that can, for instance, sim- 
plify a sentence of the form 

a A b A (d V c) -> (a A d) V (c A /) 

to 
a Ab Ac -)• dV f 

• Opportunistic reasoning about the interaction of equalities and quantification. 
For example, 

(Vx)[x = 1 A p(x) -> x = 2 V q(x)] 

simplifies to: 
p(l)   ->  q(l) 

via special strategies for quantifiers. 

• Rewrite rules (conditional and unconditional) for interpreted function sym- 
bols. These are useful for simplifying terms involving lists and arrays; for 
instance, rewriting 

contents(assign(kTra.yl, y, z), y) 

to z. 

Furthermore, the simplifier relies heavily on congruence closure [NO80] for rea- 
soning about equality and uninterpreted function symbols. Congruence closure is 
also tightly integrated with a decision procedure for inequalities over totally ordered 
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domains. -The combined decision procedure works in polynomial time in most prac- 
tical cases and is an attractive alternative to the more general, but more expensive 
Sup-Inf procedure described below. As a result, for example, 

f(x) =yAy<zAz<x -» f(x) < x 

simplifies to true. 
Integrating all of the above features into a single rewriting procedure results in 

an extremely effective tool. For instance, it will promptly rewrite 

(/(*) < x) A (flf(y) > y) A 

/ f{x) > g(y) 
V |   -» (x^y) 

V g(x) < f(y) 

to true. 

5.2    Decision Procedures 

By decision procedure we mean an algorithm that can decide the validity or satisfia- 
bility of a class of formulas in a given theory, and always terminates with a positive 
or negative answer. Decision procedures for a given theory may vary depending 
on their degree of completeness (i.e., which formulas they can decide) and their 
complexity, which are traded off against each other. 

Two decision procedures for Presburger arithmetic are available3. The first is 
based on the Sup-Inf method [Ble75] which efficiently decides a subset of the theory; 
the other is an implementation of Cooper's algorithm [Coo72], which is a decision 
procedure for the entire theory. 

The Sup-Inf method is complete for rational quantifier-free Presburger arith- 
metic, and can be extended to handle uninterpreted function symbols [Sho79]. Al- 
though it is incomplete if variables are required to be integer-valued and its com- 
plexity is exponential, the Sup-Inf method often works well in practice. With it one 
can decide, for example, that the formula 

x > (y + z) A (z < z) A (y = 0)  -» f{x) = f(z) 

should simplify to true. Cooper's algorithm can decide the full Presburger theory 
over the integers (without function symbols), but is of super-exponential complexity. 
It can establish the validity of sentences such as 

Vx Vy 3z ((x + z) > y). 

Despite the fact that Sup-Inf is incomplete for the integer fragment of Presburger 
arithmetic, we have found that STeP has been able to prove most of the verification 
conditions that arise in practice using only Sup-Inf and the simplifier. 

3Presburger formulas are first-order formulas over integers, integer variables, addition and <. 
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For deciding the validity of prepositional formulas with small clausal forms, 
an efficient implementation of the classic Davis-Putnam procedure ([ZS94]) can be 
used. A decision procedure to check the validity of prepositional temporal logic 
formulas is also provided [KMMP93]. 

We should note that while the problem of effectively and efficiently integrating 
different decision procedures has commanded much attention over the years (e.g., 
[N079, BM88b]), we have not yet implemented the more general methods. We 
consider this to be a promising direction for future research and implementation. 

5.3 First-order Prover 

As pointed out in Section 5.1, the contextual rewriting mechanism can perform 
simple reasoning about quantifiers and equality. However, more complex reasoning 
involving unification is often needed to prove the validity of certain first-order for- 
mulas that arise in verification. Such theorems are seldom "deep," and can often 
be proved by applying a few mechanical inference rules with very little heuristic 
guidance. 

A theorem prover based on non-clausal resolution and paramodulation [MW93] 
is available as a semi-decision procedure for the full first-order predicate calculus 
with equality, automated in a style similar to the SNARK [SWL+94] and OTTER 

[McC94] provers: the search is agenda-based, term-indexing is used for efficient 
demodulation and subsumption, and paramodulation is restricted by a recursive 
path ordering on terms. This prover also uses the basic simplification procedures 
described above. Previously proven invariants can be used as lemmas by this prover. 

5.4 Interactive Prover 

Because of their worst-case complexity, the more powerful decision procedures need 
to be applied in a controlled fashion. Consequently, they are not included in the 
main simplifier, which is automatically invoked quite often, and must therefore be 
fast. Instead they are left for the user to invoke interactively. 

In addition to controlling the application of decision procedures, the interaction 
also provides tools for proving the validity of formulas in the undecidable settings 
of classical and temporal first-order logic. 

This interaction is managed through a Gentzen-style first-order prover (see e.g., 
[Gal87]), which is guided by the user. Subgoals in a proof can be established via 
simplification, decision procedures, automatic propositional temporal proof-search, 
or resolution. The overall proof search is directed by the user, who decides which 
inference rules and decision procedures are applied to any given goal. 

We also support a Gentzen-style first-order temporal prover, which can verify 
propositional temporal logic formulas automatically; traditional Gentzen-style proof 
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rules are supported, as well as temporal rules such as: 

rhA,<p   v>,r\-A,on<p 
(HD) rhA,Dp (DI-) 

r,y,ODyh A 
r.GyHA 

Proof search proceeds in a bottom-up manner: from the goal below the line, the 
search proceeds to the new subgoals above the line. 

6    Examples 

6.1    N-Process Dining Philosophers Program 

Dijkstra's dining philosophers problem describes N philosophers whose only activ- 
ities in life are eating and thinking. The philosophers eat only rice, and for this 
purpose need two chopsticks each. Unfortunately, their round dining table is only 
equipped with N chopsticks. This excludes adjacent philosophers from eating si- 
multaneously. 

A solution to the dining philosophers problem is given in Figure 10. In program 
DINE, chopsticks are acquired via the binary semaphore variables c[l],..., c[N], and 
deadlock (the possibility that every philosopher picks up his left chopstick at the 
same time) is prevented by the semaphore variable r, having initial value N - 1. 
One may interpret r as a door between the library and the dining hall, only allowing 
at most N — 1 philosophers into the dining hall. 

in N   : integer where N > 2 
local     c     : array [1..N] of integer where Vi : [L.iV]. c[i] 

r     : integer where r = N — 1 

t=i 
P[i] 

= 1 

loop forever do 
Vi: noncritical 
h: request r 

£3: request c[i\ 
£4: request c[(i moc IA0 + 1] 
i5: critical 
4: release eft] 
£1: release c[(i mod N) + l] 
4: release r 

Figure 10: Program DINE (Dining Philosophers) 

Mutual exclusion, stated as 

0-<(atjßs[i] A atJ5[(imodN) + l]), 
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follows from the invariants: 

Xi:     c[t]>0 

X2:    atJ5..7[i] + at J4..6[{i mod N) +I] + c[(imodN) + l] =  1 

The invariant xi is generated as a bottom-up invariant, while X2 is generated by 
the strengthening heuristics. Twelve verification conditions need to be proven to 
establish the inductiveness of \2, aU °f which are proven automatically. 

6.2    Szymanski's N-Process Mutual Exclusion Algorithm 

The system has also been applied to prove mutual exclusion for Szymanski's mu- 
tual exclusion algorithm [Szy88], which is a symmetric parameterized program that 
provides mutual exclusion for an arbitrary number of processes. In [MP90] and 
[MP91c], several temporal proof techniques were applied to prove some properties 
of this program. The safety property, mutual exclusion, was also formally verified 
in [NT91] using the Boyer-Moore prover [BM88a]. We discuss here a more recent 
version [SV94] of Szymanski's algorithm. We actually verified a slightly modified 
program from the one in the prepublished version of [SV94]. Our version is written 
in SPL and corrected to avoid deadlock. 

Szymanski's mutual exclusion algorithm is available in two versions. The short- 
est, and most abstract, is the atomic version, which allows quantification over pa- 
rameterized variables in test statements; these tests are treated as atomic constructs. 
The more refined molecular version replaces tests that involve quantified formulas 
with more primitive program constructs. The two versions are presented in Fig- 
ures 11 and 12, respectively. 

The atomic version 

The atomic version of Szymanski's mutual exclusion algorithm is shown in Figure 11, 
which identifies three parts: the doorway, the waiting room and the inner sanctum. 
The variables a, s and w may be given the following interpretation: a[i], s[i] and w[i] 
indicate whether process i has requested access to the critical section, has entered 
through the doorway and is not in the waiting room, or is in the waiting room, 
respectively. The quantified tests in £3, £5, £7, £10 and £n, which are considered 
atomic, can be seen as gates between the different stages. Processes can only pass 
£3 if there are no processes in the doorway or in the inner sanctum. However, as 
long as processes are waiting at £3, all processes that enter are redirected to the 
waiting room, opening £3 again. The last process that passes through £3 locks £3 
behind it and then bypasses the waiting room, thereby opening the gate £7 such that 
the waiting processes can come out of the waiting room. At this point £3 remains 
locked until all processes inside the doorway have passed the critical section. Gate 
£10 is opened when all processes have left the waiting room.  Gate £\\ allows the 
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processes that are inside the doorway access to the critical section, one by one, and 
in order of process number. 

in N    : integer where N > 1 
local     a     : array [1..N] of boolean where Vi : [l..iV].->a[(] 

s     : array [l.-N] of boolean where Vi 
array [1.../V] of boolean where Vi w 

[l..N].^s[i] 
[l..N].-iw[i] 

i=l 
P[i\ 

loop forever do 
~£l-. noncritical 
£2: a[i] := T 

£3: await V? : [1..N]. ->s\j] 

£4: (u;[t],s[i]):=(T,T) 

e5-. if 3j : [1..N]. {a\j] A -*w\j]) then 
4:   s[t\:=F 
£7:  await 3j : [l.JV]. (s[j] A -w;[?]) 
4:   s[*]:=T 

£9: tü[i] := F 

ho await Vj : [l..iV]. -^[7] 

in await V7 : [l-{i- 1)]. ""'«[i] 
£12 critical 
/l3 (s[i],a[i]):=(F,F) 

Figure 11: Program SZY-A (Szymanski's algorithm: atomic version). 

This procedure is reflected in the following four invariants, 

A0 : at.£s..i3[i]   ->   ->atM[k] 

Ai : a*-&[*]    -4-   3* : [l.JV]. at-^iof*] 

A2 : atJu..i3[i]   ->    -ia<_^4..9[Ar] 

A3 :    ai-£i2,i3W A A; < i   -»   -naf -i4..i3[&] 

which establish mutual exclusion. These invariants may be interpreted as follows: 

• AQ\ once a process i has entered the inner sanctum, the doorway is locked, 
i.e., no process k may be atJ.$. 
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• A\\ if a process is about to leave the waiting room, there is already a process 
k in the beginning of the inner sanctum. 

• A2:   once a process is in the latter part of the inner sanctum, there is no 
process k in the waiting room or in the doorway. 

• A3:  if a process is in the critical section, there is no other process with a 
smaller index in the doorway, waiting room or inner sanctum. 

The inductive invariant A3 is established using the conjunction of Ao, Ai, and A2, 
where A3 implies mutual exclusion: 

n{atJ12[i] A atJulJ] -> i = j) 

Bottom-up invariants play a crucial role in establishing the auxiliary invariants. 
For example, the system generates the local invariants 

a*-4,6,9..i3[(]    **    s[i\ 

atJ3..i3[i]   <->   a[i] 

at JH.5.s[i\   <->    w[i] 

which are used to establish A0,A\,A2 and A3. Of the 69 required verification 
conditions, 54 were established automatically. The remainder required short sessions 
using our interactive prover. 

The molecular version 

Statements such as 
await 3j : [I..N]. (s\j] A ->w[j]) 

involve quantifiers over every process and are not usually available as atomic prim- 
itives. Therefore, we must refine the quantifiers to available programming language 
constructs. Typically, statements like the one above can be refined into loops, e.g.: 

while -•s[j] V w\j] do 
j := (j mod N) + l 

and similarly for universal quantifiers. The refined program is shown in Figure 12. 
Along with the refinement of the program, we must also refine the invariants 

we expect to hold. The invariants Ao, Ax, A2 and A3 from the atomic case are thus 
refined into: 
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in N : integer where N > 1 
local     a : array [l..iV] of boolean where Vi 

s : array [1--N] of boolean where Vi 
w : array [1--N] of boolean where Vi 

a\i\ [1..N] 
[1..N]. -.«[»] 
[1..N]. w\i\ 

P[i\ 

'£$:   loop forever do 
local j : integer 
l\.   noncritical 
4:   (a[i\J) :=(T,1) 
4:   while j < N do 

4:  when _|s[i] do 

  doorway  
4:   Hi],s[i],i):=(T,T,l) 
  waiting room  

£7:   while j < N do 
8:   if a[7'] A -iw\j] then 

'4:   s[i] := F 
£io: while ->s[j] V w\j] do 

4i = J := (jmodN) + l 
ei2-.(j,s[i]):=(N+l,T) 

else ^i3: j := j + 1 
 inner sanctum  

*M:MtU):=(F,l) 
£i$: while j < N do 

£ie'. when ->w[j] do 

*18: J := 1 
£ig: while j < i do 

4o: when ->s[j] do 

42: critical 
4a: (s[i],a[i]) :=(F,F) 

Figure 12: Program SZY-M (Szymanski's algorithm: molecular version). 
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at Ji4..23[i] 
M0:        |   V    atl7fi[i\f\j[i\>k 

V    atl13[i]Aj[i]>k 

3r : [1..N]. 
/ A 

A 

(r = iV atA4..23M)    \ 
{atJ3A[k]^j[k]<r) 
iatJ5[k]->j[k]<r) 
-iatl6[k] ) 

Mi :       atlx2[i\ -> 3ft : [1..JV]. 
V 

0*^15,16W Aj[ft] < i 
ai_£i7[ft] Aj'[ft] < z 

Mo 

(        atJi8..23[i] ^ 
V    atJl5A6[i\Aj[i}> k 

\V   oiii6[i]Aj[il>*     / 
-lai J7..14[A;] 

Ot -^22,23W \ 
M3 :       ft < i A   I   V    ai-£i9,2oW Aj'[i] > ft      ->• -.at J7..23W 

V    af_£2iW Aj'[i] > ft     y 

The local variable j is represented as an array indexed over the parameterized 
processes. The invariant M3, like A3, implies mutual exclusion at the critical section. 

Verification of mutual exclusion for the molecular version required proving 129 
verification conditions, 99 of which were established automatically by the simplifier. 
The rest were established using the interactive prover. 

The refinement of the invariants of the atomic algorithm into the invariants of 
the molecular algorithm was nontrivial. The most difficult part was refining AQ 

into Mo. The interactive prover proved to be useful as a design tool in this case. 
When an incorrect invariant was presented to the interactive prover, the invalid 
verification conditions often gave valuable insight into how to correct the erroneous 
program assertion. 

6.3    Distributed iV-way Arbiter Circuit 

As a final example, we consider the high-level specification of a distributed iV-way 
arbiter circuit ARB, originally proposed by Martin [Mar85] and studied in [D1I88]. 

The proposed parametrized circuit manages mutual exclusion between N users 
having access to a shared resource.   The circuit is composed of N arbiter cells 
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Figure 13: Distributed iV-way arbiter circuit ARB. 

connected in a circular pattern. Each user is connected to a cell of the arbiter, and 
there is a single token that circulates among the cells: whenever a cell has the token, 
the corresponding user can be granted access to the shared resource. 

A cell can receive requests both from the user and from the cell to the right. If 
it has the token and receives a request from the user, the cell destroys the token 
and grants access to the user; the token reappears when the user releases the shared 
resource. If a cell has the token and receives a request from the cell to the right, it 
passes the token to the requesting cell. If both requests occur at the same time, the 
cell nondeterministically chooses which one to satisfy. If a cell receives a request 
but neither the cell nor its user has the token, the cell forwards the request to the 
cell to the left, and waits for the token. 

The cells and the users communicate using a four-phase asynchronous handshake 
protocol based on request and acknowledge signals. The connections between the 
users and the cells are depicted in Figure 13. The signals rc and ac represent requests 
and acknowledges between cells, the signals ru and au represent user requests and 
acknowledges, and t represents the token. 
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time 

"uWi 

1 
1 

critical release ! noncritical ! request 

Figure 14: Four-phase handshake protocol between user i and cell i, 0 < i < N. 

time 

rrU] 

ac [i ] 

i 

grant     ! received quiescent 

i 
i 

request   I 

Figure 15: Four-phase handshake protocol between cell i and cell (i — l)mod N, 
0 < *' < N. 
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The protocol between user i and the corresponding cell i, 0 < i < N, is shown in 
Figure 14. Initially, both ru[i] and au[i] are F. When the user wishes to access the 
shared resource, it sets ru[i] to T. If the arbiter cell has the token, it responds to the 
request by setting au[i] to T and destroying the token. When the user releases the 
shared resource, it sets ru[i\ to F, and the arbiter cell acknowledges this by setting 
au[i] to F and recreating the token. 

The protocol between cell i and cell (i - l)mod N, 0 < i < N, is shown in 
Figure 15. Initially, both rc[i] and ac[i] are F. Cell i can request the token by 
setting rc[i] to T. If cell (i - l)mod N has the token, it can respond to the request 
by destroying the token and setting ac[i\ to T. Cell i then acquires the token and 
acknowledges this by setting rc[i] to F. Finally, cell (i - l)mod N sets ac[i] to F.4 

The high-level behavior of the circuit has been encoded in SPL as shown in 

Figure 165. 

Mutual Exclusion 

The mutual exclusion property for ARB can be stated as: 

□ Vj, k : [O..N-l].(au\j] A au[k] -*• j = fc). 

This property is established with the help of the auxiliary invariant, 

3\j:[0..N-l].(t\j]Vau\j]) 

A 

Vj:[O..N-l].^(t\j]Aau[j]) 

stating that at any given time there is exactly one cell that either has the token or 
is granting the user access to the resource. To prove this invariant, STeP automat- 
ically generates 12 verification conditions, which can be established with the usual 
combination of automatic and interactive theorem proving. 

Absence of Unsolicited Requests 

Another desirable property of the arbiter circuit is that a cell should not request 
the token, unless 

1. it is receiving a request from the user or from the cell to the right, and 

2. the cell does not have the token, nor it is granting access to the shared resource. 

4In this model, the token simultaneously disappears from cell (i - l)mod N and reappears in 
cell i. This is consistent with the model presented in [Dil88]. 

5 This program is slightly different from the model presented in [DU88]: when an arbiter cell 
receives a request from its cell to the right it checks that its user is not accessing the resource before 
forwarding the request, while it does not in Dill's model. 
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in N : integer where N > 1 
local     rc : array [O..Ar-l] of boolean where Vi : [0../V—1 

ac : array [0..iV—1] of boolean where Vi : [0..JV—1 
ru : array [0..iV—1] of boolean where Vi : [0.../V—1 
au : array [0..iV—1] of boolean where Vi : [0..N-1 
t : array [0..iV-l] of boolean where Vi : [0..iV-l 

loop forever do 
lx :    guard ->ru[i] A -iau[i\ do ru[i] := T 

->ar\i\ 
-T,. Z 

->auli\ 
t[i] «i = 0 

II 
i=0 

or 

or 

or 

U2 :    guard ru[i] A au[i] do ru[i] := Fj 

/3 :   guard ru[i] A -iau[z] A t[i] do (*[i], au[i]) := (F, T) 

U :   guard ->ru[i] A au[z] do (t[i], au[i\) := (T, F) 

or 

or 

l5 :    guard ->rc[i] A ->ac[z] A —»*[*] A ->ac[i] 

' ru[i] A -ia„[i] ^ 
A V 

^ rc[(z + l)mod iV] A ->ac[(i + l)mod N] ) 

do rc[i] := T 

k :   guard -irc[(i + l)mod TV] A ac[(i+ l)mod TV] 
do ac[(i+l)mod iV] := F 

or 
77 :    guard rc[(i+ l)mod TV] A -nac[(i + l)mod iV] A i[z] 

t[i] \        / F \ 
do   |    *[(*' +l)mod N]       :=      T 

ac[(i+l)mod N] )       \T ) 
or 

/8 :    guard rc[i] A ac[i] do rc[i] := F 

Figure 16: High-level SPL encoding of ARB. 
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This property is not essential for mutual exclusion, but it contributes to the effi- 
ciency of the design. It is expressed by the temporal logic formula: 

DVj : [0..N-1] . 

7   'S]   \ 
A           -► 

\  -"OcI>']  / 

(   -<3\   \ 
A A ru\j) V 

'   re[(j+ 1)mod N] 
A 

v -iac[(j+l)mod N] 

This invari ant can also be proved by STeP. 

7    Conclusions 

Despite the fact that STeP is still at an early stage of development, it has already 
proved useful in understanding and debugging complex programs. For instance, 
the system helped identify an error in the mutual exclusion algorithm from a draft 
version of [SV94] that allowed the possibility of deadlock. 

Although STeP is founded on the deductive methodology of Manna and Pnueli 
[MP94b], its development has been inspired by a large body of related work in 
formal verification, such as the PVS [SOR93] and SMV [BCMD90] systems, rep- 
resenting the deductive and model-checking approaches, respectively. Other recent 
approaches to combining model checking and deduction include [Hun93] and [KL93], 
where model checking is used to verify local properties of a system, which are then 
combined to prove global properties using deductive techniques. 

The system presented in this paper reflects six months of implementation effort. 
Obviously there are many areas that need to be improved and completed. Major 
extensions that are being worked on include: 

• Increased flexibility of verification diagrams; 

• Inclusion of refinement verification rules [KMP94]; 

• Tighter integration of decision procedures, including more sophisticated constraint- 
solving techniques; 

• Incorporation of decomposition, following the techniques described in [Cha93]; 

• Providing better debugging facilities; 

• Connection of other systems to STeP (e.g., symbolic computation systems 
like Mathematica to support hybrid systems). 

• Addition of the ability to handle real-time and hybrid systems. 

40 



Acknowledgements 

We would like to thank Amir Pnueli and Arjun Kapur for their feedback and com- 
ments, and Xavier Leroy for his ML advice. 

41 



References 

[BCMD90] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Symbolic model 
checking: 1020 states and beyond. In Proc. 5th IEEE Symp. Logic in 
Comp. Sei., pages 428-439, June 1990. 

[Ble75] W.W. Bledsoe.  A new method for proving certain Presburger formu- 
las.   In Proc. of the 4th International Joint Conference on Artificial 
Intelligence, pages 15-21, September 1975. 

[BM88a] R.S. Boyer and J S. Moore. A Computational Logic Handbook. Aca- 
demic Press, Boston, MA, 1988. 

[BM88b] R.S. Boyer and J S. Moore. Integrating decision procedures into heuris- 
tic theorem provers: A case study with linear arithmetic. Machine 
Intelligence, 11:83-124, 1988. 

[Cha93] E. Chang. Compositional Verification of Reactive and Real-Time Sys- 
tems. PhD thesis, Department of Computer Science, Stanford Univer- 
sity, Stanford, California, 1993. 

[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplication. In 
Machine Intelligence, volume 7, pages 91-99. American Elsevier, 1972. 

[Dil88] D.L. Dill.     Trace Theory for Automatic Hierarchical Verification of 
Speed-Independent Circuits. MIT Press, 1988. 

[Gal87] J.H. Gallier. Logic for Computer Science—Foundations for Automatic 
Theorem Proving. Wiley, New York, 1987. 

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Sei. 
Comp. Prog., 8:231-274, 1987. 

[HSB93] R. Hojati, V. Singhal, and R.K. Brayton. Edge-Street/Edge-Rabin au- 
tomata environment for formal verification using language containment. 
SRC report, University of California, Berkeley, 1993. 

[Hun93] H. Hungar. Combining model checking and theorem proving to verify 
parallel processes. In Proc. 5th International Conference on Computer 
Aided Verification, volume 697 of Lecture Notes in Computer Science, 
pages 154-165. Springer-Verlag, 1993. 

[KL93] R. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and 
beyond. In C. Courcoubetis, editor, Proc. 5th Int. Conf. on Computer- 
Aided Verification, number 697 in Lee. Notes in Comp. Sei, pages 166- 
179. Springer-Verlag, 1993. 

42 



[KMMP93] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm 
for full prepositional temporal logic. In Proc. 5th International Confer- 
ence on Computer Aided Verification, volume 697 of Lecture Notes in 
Computer Science, pages 97-109, 1993. 

[KMP94] Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification of sim- 
ulation and refinement. In J.W. de Bakker, W.-P. de Roever, and 
G. Rozenberg, editors, A Decade of Concurrency, volume 803 of Lec- 
ture Notes in Computer Science, pages 273-346. Springer-Verlag, 1994. 

[Man94] Z. Manna. Beyond model checking. In Proc. 6th International Confer- 
ence on Computer Aided Verification, volume 818 of Lecture Notes in 
Computer Science, pages 220-221. Springer-Verlag, 1994. 

[Mar85] A.J. Martin. The design of a self-timed circuit for distributed mutual 
exclusion. In H. Fuchs, editor, Chapel Hill Conference on Very Large 
Scale Integration. Computer Science Press, 1985. 

[McC94] W.W. McCune. OTTER 3.0 reference manual and guide. Technical Re- 
port ANL-94/6, Argonne National Laboratory, Mathematics and Com- 
puter Science Division, Argonne, Illinois, January 1994. 

[MP90] Z. Manna and A. Pnueli. An exercise in the verification of multi- 
process programs. In W.H. J. Feijen, A.J.M van Gasteren, D. Gries, 
and J. Misra, editors, Beauty is Our Business, pages 289-301. Springer- 
Verlag, 1990. 

[MP91a] Z. Manna and A. Pnueli. Completing the temporal picture. Theor. 
Comp. Sei., 83(1):97-130, 1991. 

[MP91b] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur- 
rent Systems: Specification. Springer-Verlag, New York, 1991. 

[MP91c] Z. Manna and A. Pnueli. Tools and rules for the practicing verifier. In 
R. Rashid, editor, Carnegie Mellon Computer Science: A 25-year Com- 
memorative, pages 121-156. ACM Press and Addison-Wesley, 1991. 

[MP94a] Z. Manna and A. Pnueli. Temporal verification diagrams. In Proc. of the 
lli/l Annual Symp. on Theoretical Aspects of Computer Science, volume 
789 of Lecture Notes in Computer Science, pages 726-765. Springer- 
Verlag, 1994. 

[MP94b] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: 
Safety. Springer-Verlag, New York, 1994. To appear. 

[MW93] Z. Manna and R. Waldinger. The Deductive Foundations of Computer 
Programming. Addison-Wesley, Reading, MA, 1993. 

43 



[N079] - G. Nelson and D.C. Oppen. Simplification by cooperating decision pro- 
cedures. ACM Transactions on Programming Languages and Systems, 
l(2):245-257, October 1979. 

[NO80] G. Nelson and D.C. Oppen. Fast decision procedures based on congru- 
ence closure. J. ACM, 27(2):356-364, April 1980. 

[NT91] M. Nagayama and C.L. Talcott. An NQTHM mechanization of "An ex- 
ercise in the verification of multi-process programs". Technical Report 
STAN-CS-91-1370, Computer Science Department, Stanford Univer- 
sity, Stanford, California, June 1991. 

[Sho79] R.E. Shostak. A practical decision procedure for arithmetic with func- 
tion symbols. J. ACM, 26(2):351-360, April 1979. 

[SOR93] N. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A 
reference manual (beta release). Technical report, Computer Science 
Laboratory, SRI International, Menlo Park, California, March 1993. 

[Str82] R.S. Streett.   Propositional dynamic logic of looping and converse is 
elementarily decidable. Information and Control, 54:121-141, 1982. 

[SV94] B.K. Szymanski and J.M. Vidal.   Automatic verification of a class of 
symmetric parallel programs. In Proc. 13th IFIP World Computer 
Congress, 1994. To appear. 

[SWL+94] M.E. Stickel, R. Waldinger, M. Lowry, Th. Pressburger, and I. Under- 
wood. Deductive composition of astronomical software from subroutine 
libraries. In Proc. 12th Int. Conf. on Automated Deduction, pages 341- 
355, 1994. 

[Szy88] B.K. Szymanski. A simple solution to Lamport's concurrent program- 
ming problem with linear wait. In Proc. 1988 International Conference 
on Supercomputing Systems, pages 621-626, 1988. 

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to auto- 
matic program verification. In Proceedings of the First Symposium on 
Logic in Computer Science, pages 322-331, Cambridge, June 1986. 

[Zha93] H. Zhang. Contextual rewriting in automated reasoning. Technical Re- 
port Technical Report 93-07, Department of Computer Science, Uni- 
versity of Iowa, August 1993. 

[ZS94] H. Zhang and M.E. Stickel. Implementing the Davis-Putnam algorithm 
by tries. Draft manuscript, March 1994. 

44 


